# Honors Chemistry 2 Unit 3



#### <u>Students should be able to:</u>

- ✓ Predict to some extent whether a substance will be a strong electrolyte, weak electrolyte, or nonelectrolyte.
- $\checkmark$  Predict the ions that an electrolyte dissociates into.
- ✓ Identify substances as acids, bases, and salts.
- ✓ Using solubility rules, predict if a precipitate forms in a metathesis reaction. Next, predict its products and write a balanced equation.
- $\checkmark$  Predict the products and write a balanced chemical equation for neutralization reactions.
- ✓ After constructing molecular reactions for metathesis reactions, be able to identify spectator ions and write the net ionic equations.
- ✓ Assign oxidation numbers to atoms.
- ✓ Determine whether a reaction is Redox (single replacement) or not.
- ✓ Use the activity series to predict whether a Redox reaction will occur and be able to write the molecular and net ionic equations if it does.
- $\checkmark$  Calculate moles of solute, volume of solution, or Molarity of the solution from the other two.
- Recognize and work dilution problems.
- ✓ Calculate the volume of a certain molarity solution required to react with another solution of known molarity.
- ✓ Calculate the mass of a substance that would be required to react with a given volume of a solution of known molarity.
- Calculate mass of solute or concentration of an unknown solution from titration data.

#### <u>Keywords:</u>

- concentration
- titration
- indicators
- solvent
- strong electrolyte
- precipitate
- molecular equation
- spectator ions
- salts
- reduction

- molarity
- standard solution
- aqueous
- electrolyte
- weak electrolyte
- solubility
- (complete) ionic equation
- acids
- neutralization
- redox reaction

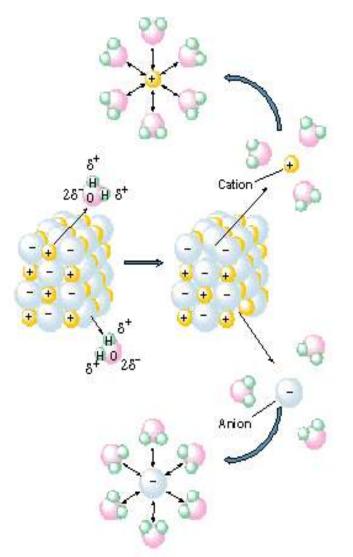
- dilution
- equivalence point
- solute
- nonelectrolyte
- activity series
- metathesis
- net ionic equation
- bases
- oxidation
- oxidation number

## I. <u>Aqueous Solutions</u>

A. What is an <u>aqueous solution</u>?

- B. What is the <u>solvent</u>?
- C. What is the <u>solute</u>?
- D. What does concentration mean?
- E. How do you measure molarity (M)?
- F. Sample Exercise 14.1 Calculate the molarity of a solution made by dissolving 23.4 g of sodium sulfate, Na<sub>2</sub>SO<sub>4</sub>, in enough water to form 125 mL.

G. Sample Exercise 14.2 – How many grams of Na<sub>2</sub>SO<sub>4</sub> are required to make 0.350 L of 0.500 M Na<sub>2</sub>SO<sub>4</sub>?


- H. How do you make a <u>dilution</u>?
  - 1. What is the formula that you can use?

I. Sample Exercise 14.3 – How much 3.0 M  $H_2SO_4$  would be required to make 500 mL of 0.10 M  $H_2SO_4$ ?

## II. <u>Electrolytes</u>

A. Electrolyte vs. Nonelectrolyte

- B. Strong vs. Weak Electrolytes
  - 1. What happens when an ionic substance dissolves?



C. Sample Exercise 4.4 – What are the molar concentrations of all ions present in a 0.025 M aqueous solution of calcium nitrate?

## III. Acids, Bases, and Salts

- A. What is an <u>Acid</u>?
  - 1. What is the difference between a Monoprotic Acid and a Diprotic Acid?

- 2. What is the difference between a strong acid and a weak acid?
- 3. What are the strong acids?
- B. What is a <u>Base</u>?
  - 1. What types of compounds make strong bases?
- C. What are <u>Salts</u>?

D. What is a <u>neutralization reaction</u>?

E. Sample Exercise 4.6 – Write a balanced equation for the reaction of hydrobromic acid with barium hydroxide in aqueous solution.

## IV. <u>Ionic Equations</u>

- A. Spectator Ions -
- B. Net Ionic Equations -

C. Sample Exercise 4.7 – Write the net ionic equation for the neutralization of two of the acidic hydrogens of phosphoric acid by sodium hydroxide in aqueous solution.

## V. <u>Metathesis Reactions</u>

A. What is a <u>Metathesis Reaction</u>?

B. What are the *driving forces* for a metathesis reaction?

#### C. Precipitation Reactions

1. Precipitate -

#### 2. <u>Solubility</u> –

#### D. Solubility Rules

| SOLUBLE SALTS                                                                                     | INSOLUBLE SALTS                                                                                                                    |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| Group I compounds and ammonium<br>compounds                                                       | Hydroxides                                                                                                                         |  |
| Nitrates, hydrogen carbonates and chlorates                                                       | ( <b>EXCEPT</b> Group I and ammonium, hydroxides of Ca <sup>2+</sup> , Sr <sup>2+</sup> and Ba <sup>2+</sup> are slightly soluble) |  |
| Chlorides, bromides and iodides ( <b>EXCEPT</b> those of $Pb^{2+}$ , $Ag^{+}$ and $Hg_{2}^{2+}$ ) | Carbonates, phosphates, chromates and<br>sulfides<br>(EXCEPT group I and ammonium salts,<br>sulfides of group II are soluble)      |  |
| Sulfates $(\textbf{EXCEPT} Ag^{+}, Sr^{2+}, Ba^{2+}, Pb^{2+} and Ca^{2+})$                        |                                                                                                                                    |  |

E. Sample Exercise 4.8 – Write balanced molecular, ionic, and net ionic equations for the precipitation reactions (if any) that occur when solutions of the following compounds are mixed: (a) BaCl<sub>2</sub> and Na<sub>2</sub>SO<sub>4</sub> (b) KCl and Na<sub>2</sub>SO<sub>4</sub>.

F. Reactions in which a weak electrolyte of nonelectrolyte forms:

G. Reactions in which a Gas forms:

H. Sample Exercise 4.9 – Write balanced complete ionic and net ionic equations for any reactions that occur when the following compounds are mixed: (a)  $Cr(C_2H_3O_2)_2$  (aq) and HNO<sub>3</sub> (aq) (b) FeCO<sub>3</sub> (s) and HCl (aq) (c) PbS (s) and H<sub>2</sub>SO<sub>4</sub> (aq).

## VI. <u>Reactions of Metals</u>

A. Oxidation and Reduction

### B. Oxidation of Metals by Acids and Salts

C. Sample Exercise 4.10 - Write the balanced molecular and net ionic equations for the reaction of aluminum with hydrobromic acid.

D. The Activity Series

| The Activity Series |                  |                  |                           |  |
|---------------------|------------------|------------------|---------------------------|--|
| Metal               | React with Acid? | React with Steam | React with Cold<br>Water? |  |
| Li                  | YES              | YES              | YES                       |  |
| K                   | YES              | YES              | YES                       |  |
| Са                  | YES              | YES              | YES                       |  |
| Na                  | YES              | YES              | YES                       |  |
| Mg                  | YES              | YES              | NO                        |  |
| AĪ                  | YES              | YES              | NO                        |  |
| Zn                  | YES              | YES              | NO                        |  |
| Fe                  | YES              | YES              | NO                        |  |
| Sn                  | YES              | NO               | NO                        |  |
| Pb                  | YES              | NO               | NO                        |  |
| Н                   | -                | NO               | NO                        |  |
| Cu                  | NO               | NO               | NO                        |  |
| Ag                  | NO               | NO               | NO                        |  |
| Pt                  | NO               | NO               | NO                        |  |
| Au                  | NO               | NO               | NO                        |  |

E. Sample Exercise 4.11 – Will an aqueous solution of iron (II) chloride oxidize magnesium metal? If so, write the balanced molecular and net ionic equations for the reaction.

## VII. Solution Stoichiometry

A. How to Solve Solution Stoichiometry Problems:

B. Sample Exercise 4.12 - How many moles of H<sub>2</sub>O form when 25.0 mL of 0.100 M HNO<sub>3</sub> solution is completely neutralized by NaOH?

C. <u>Titrations</u> –

- 1. Standard Solutions -
- 2. Equivalence Point -
- 3. Indicators –

D. Sample Exercise 4.13 – One method used commercially to peel potatoes is to soak them in a solution of NaOH for a short time, remove them from the NaOH, and spray off the peel. The concentration of NaOH is normally in the range 3 to 6 M. The NaOH is analyzed periodically. In one such analysis, 45.7 mL of 0.500 M H<sub>2</sub>SO<sub>4</sub> is required to react completely with a 20.0 mL sample of NaOH solution:

 $H_2SO_4$  (aq) + 2 NaOH (aq)  $\rightarrow$  2  $H_2O$  (I) + Na<sub>2</sub>SO<sub>4</sub> (aq)

What is the concentration of the NaOH solution?

E. Sample Exercise 4.13 – The quantity of Cl<sup>-</sup> in a water supply is determined by titrating the sample with Ag<sup>+</sup> :

 $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$ 

What mass of chloride ion is present in 10.0 g sample of the water if 20.2 mL of 0.100 M Ag  $^+$  is required to react with all the chloride in the sample?

## VIII. Rules for assigning OXIDATION STATES (numbers):

A. UNCOMBINED ELEMENTS (ELEMENTS NOT BONDED TO ANY OTHER TYPE OF ELEMENT) have an oxidation number of ZERO. This includes any formula that has *only* one chemical symbol in it (single elements & diatomic elements).

Examples:

- **B**. In COMPOUNDS (remember, they are neutral and have 2+ different elements bonded together), the sum of the CHARGES must ADD UP TO ZERO so the ions within a compound have oxidation numbers equal to their OXIDATION # FOUND ON PERIODIC TABLE/INDIVIDUAL CHARGES.
  - Ex: NaCl Ex: Mg<sub>3</sub>N<sub>2</sub>

Ex: HNO<sub>3</sub>

\* The OXIDATION NUMBER is the number INSIDE the PARENTHESES. It is the charge on JUST ONE atom of that element!

\*\* Remember that we almost always write the + ION FIRST and the - ION LAST in a compound formula.

EXAMPLE:

EXCEPTION to this rule:

C. GROUP 1 METALS always have an oxidation number of +1 when in a compound (bonded to another species). Likewise, combined GROUP 2 METALS always therefore have a +2 oxidation number when located within a compound.

Ex:

D. FLUORINE is always a -1 in compounds. The other HALOGENS (ex: Cl, Br) are also -1 as long as they are the most electronegative element in the compound.

Ex:

**E**. HYDROGEN is a +1 in compounds unless it is combined with a metal (and is at the back of the formula), then it is -1.

Ex:

F. OXYGEN is USUALLY -2 in compounds.

Ex:

When combined with fluorine (F), which is more electronegative, oxygen is +2.

Ex:

When in a PEROXIDE oxygen is -1. A peroxide is a compound that has a formula of  $X_2O_2$ .

Ex:

**G**. The sum of the oxidation numbers in polyatomic ions must equal the CHARGE ON THE ION (SEE TABLE E).

Ex:  $Cr_2O_7^{2-}$